16,367 research outputs found

    Solar performance evaluation test program of the 9.5-ft-diam. electroformed nickel concentrator S/N 1 at Table Mountain, California

    Get PDF
    Optical and calorimetric tests of nickel mirrors for use as power source for thermionic generator

    Analytical electron microscopy of biogenic and inorganic carbonates

    Get PDF
    In the terrestrial sedimentary environment, the mineralogically predominant carbonates are calcite-type minerals (rhombohedral carbonates) and aragonite-type minerals (orthorhombic carbonates). Most common minerals precipitating either inorganically or biogenically are high magnesium calcite and aragonite. High magnesium calcite (with magnesium carbonate substituting for more than 7 mole percent of the calcium carbonate) is stable only at temperatures greater than 700 C or thereabouts, and aragonite is stable only at pressures exceeding several kilobars of confining pressure. Therefore, these carbonates are expected to undergo chemical stabilization in the diagenetic environment to ultimately form stable calcite and dolomite. Because of the strong organic control of carbonate deposition in organisms during biomineralization, the microchemistry and microstructure of invertebrate skeletal material is much different than that present in inorganic carbonate cements. The style of preservation of microstructural features in skeletal material is therefore often quite distinctive when compared to that of inorganic carbonate even though wholesale recrystallization of the sediment has taken place. Microstructural and microchemical comparisons are made between high magnesium calcite echinoderm skeletal material and modern inorganic high magnesium calcite inorganic cements, using analytical electron microscopy and related techniques. Similar comparisons are made between analogous materials which have undergone stabilization in the diagenetic environment. Similar analysis schemes may prove useful in distinguishing between biogenic and inorganic carbonates in returned Martian carbonate samples

    Securing poultry production from the ever-present Eimeria challenge

    Get PDF

    Stratospheric feedback from continued increases in tropospheric methane

    Get PDF
    Tropospheric concentrations of methane have increased steadily over the past ten years at an average rate of 16.5 ppbv per year, to a value in January 1988 of 1.69 ppmv. Measurements of CH sub 4 concentrations in air bubbles trapped in ice cores have shown concentrations of about 0.7 ppmv 200 years ago, with little further change for thousands of years before that. Interpolation earlier into this century suggests a concentration of about 1.1 to 1.2 ppmv in the 1940's. The only important pathway believed to be important for transfer of air from the troposphere to the stratosphere in through the tropical tropopause which is cold enough to reduce the mixing ratio of H sub 2 O in that air to about 3 ppmv. The only other major pathway for the delivery of H to the stratosphere is through the simultaneous injection of gaseous CH sub 4 in the same rising air. The formation of clouds in the stratosphere is dependent upon very low temperatures, and generally upon the amount of water vapor available. The possibility of a positive feedback exists, especially in well-oxidized methane air, that clouds are easier to form than earlier. This could mean enhancement of PSCs in both Antarctic and Arctic locations. Additional H sub 2 O in the stratosphere can also add to some of the greenhouse calculations

    Water abundance variations around high-mass protostars: HIFI observations of the DR21 region

    Get PDF
    Context. Water is a key molecule in the star formation process, but its spatial distribution in star-forming regions is not well known. Aims. We study the distribution of dust continuum and H_(2)O and ^(13)CO line emission in DR21, a luminous star-forming region with a powerful outflow and a compact H ii region. Methods. Herschel-HIFI spectra near 1100 GHz show narrow ^(13)CO 10–9 emission and H_(2)O 1_(11)–0_(00) absorption from the dense core and broad emission from the outflow in both lines. The H_(2)O line also shows absorption by a foreground cloud known from ground-based observations of low-J CO lines. Results. The dust continuum emission is extended over 36” FWHM, while the ^(13)CO and H_(2)O lines are confined to ≈24” or less. The foreground absorption appears to peak further North than the other components. Radiative transfer models indicate very low abundances of ~2×10^(-10) for H_(2)O and ~8×10^(-7) for ^(13)CO in the dense core, and higher H_(2)O abundances of ~4×10^(-9) in the foreground cloud and ~7×10^(-7) in the outflow. Conclusions. The high H_(2)O abundance in the warm outflow is probably due to the evaporation of water-rich icy grain mantles, while the H_(2)O abundance is kept down by freeze-out in the dense core and by photodissociation in the foreground cloud
    • 

    corecore